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Abstract 

A short introduction to the analytical and algebraic aspects of integrable systems is given. We 
consider the Riemannian geometry of the isospectral set belonging to the Dirichlet problem -y” + 
q(n)y = hy, y(0) = y(1) = 0, where q is a square integrable function of the real Hilbert space 
Lk([O, 11). We derive the metric and the connection for the isospectral set, which is an infinite 
dimensional real analytic submanifold of Li([O, l]), in the case of large eigenvalues. The curvature 
in the asymptotic case is then derived and it is proved that the connection and the curvature are 
well defined if we take their coefficients in the discrete Sobolev spaces. We further give the explicit 
formulae for the parallel transport and a sufficiency condition is derived such that a curve on the 
isospectral set is a geodesic. 

Keywords: Isospectral sets; Riemannian geometry; Asymptotic case 
1991 MSC: 58B20,58F07 

0. Introduction 

This is the first in a series of papers where the geometrical and analytical properties of 
the isospectral set of the Dirichlet problem 

-Y”(X) + q(x)y(x) = iY(X), Y(O) = Y(l) = 0, 
q E L&o, 11, h E C, X E [O, 11 

are investigated. First, in this paper, a short introduction to the subject from its analytical 
and algebraic viewpoint is given, and then the isospectral set is considered as a Riemannian 
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manifold for large eigenvalues A, of the Dirichlet problem. The second paper deals with 
the Grassmannian, determinant bundle and the tau function in the asymptotic case. In two 
further papers a non-asymptotic analysis is performed. 

The paper is organized as follows. After the introduction and the review of the facts used 
from inverse spectral theory, the metric and curvature of the isospectral set are calculated 
in Section 2 and it is shown that they are well defined if the coefficients are elements of 
the discrete Sobolev spaces. In Section 3 the operator which transports tangent vectors at 
the points of the isospectral set parallel to the tangent vectors at new points on the set is 
explicitly calculated. In Section 4 we consider the question when a curve is a geodesic. The 
geodesic condition is transformed in an equivalent fixed point equation and a sufficiency 
condition is given for the existence of a unique solution. 

We start by developing the analytical theory of integrable systems in the spirit of Sato [ 1 l] 
(foramoredetaileddiscussion,seethearticlesof[1,3,8,9,11,14]).LetW = Cgu~k(x)@ 
be a formal pseudo-differential operator (= $ DO), where the coefficients lie in some al- 
gebra of smooth functions of x. The Leibniz rule implies that the $ DO has to be shifted to 
the right in the following way: 

a-‘w - -2 1 (-l)j(aiwp-l-j (0.1) 
j=O 

which makes the algebra of pseudo-differential operators into an associative algebra. To 
keep things simple we consider the operators W,,, = CrEo wk(x)aPk, which keeps the 
essence of the full theory (see [6,7]). We now consider the ordinary differential equation 

W,t3”f(x) = 0, 

where we assume that the m solutions f(j), j = 0, 1,2, . . . , m are analytic, i.e. 

(0.2) 

(0.3) 

These m functions f(j) satisfy (0.2), hence, we get a linearm x m system of equations where 
we regard the 1Uj as the unknowns. Using the Cramers rule, Wj and W, are both expressed 
as ratios of two determinants involving as matrix entries the functions f(j). Furthermore, 
if we introduce the m x cc matrix K, 

K = @)}, 
J ggn, 05jic0, (0.4) 

then, 

W,,,~“‘(I,x,~ ,... )K=O and WmE)“‘(l..x,g ,... )KX=O 

holds for any regular matrix X. This implies that 

K E Gr := {cc x m matrices, with rank m}/GL(m, C). 
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Gr is a Grassmann manifold. The energy operator is defined by 

H(x) := exp(xA)K, 

95 

to.3 

a shift operator. To attain Sato’s equation let Wj (x) depend on an infinite number of variables 

Wj(x,tl.t2, -.., ). where wedenote t = (tt% t2, . . . , ). This implies that the solutions f(j) (x) 
depend on an infinite set of parameters t and the energy becomes 

Htx,t) = exp(xA) exp = E ~,,A~K, 
n=O 

(0.6) 

where we formally expanded the exponentials and the p,, are the generalized Schur polyno- 
mials. Writing hy) (x, t), 1 5 k 5 j, j E N, for the matrix elements of the energy operator 
and using the property 

ah 
at, = Pn-m tpn = o,n < Oh 

we get that the functions /zjk)(x, t) are the solutions of the PDE 

(-p&Lo, 

(0.7) 

(0.8) 

with the initial conditions 

@)(x,0) = fCk’(x). 

This gives us the analogue equation to (0.2), 

wmam$$t) =O, j = 1,2, . . . . m. (0.9) 

The time evolution of W,,, = ~~zo Wk(x, t)aek is found by differentiating (0.9) w.r.t. Zn, 
that is, we get Sato’s equation 

-$wm = B,W,,, - wan, B, = (w,anw,-I)+, (0.10) 
n 

where (A)+ = is the differential operator part of A. From the Sato equation the Lax and 
the Zakahrov-Shabat equations are easily derived. If we introduce the operator 

L = waw-l = Fuii.j-i+l, 
i=O 

(0.11) 
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then the generalized Lax equation is 

g = [B,,L]. 
n 

(0.12) 

If we expand the Lax equation and equate the coefficients in awk we get hierarchies of 
equations for example the KP hierarchy. To link these analytical facts to a geometric and 
algebraic viewpoint, we return to the point where we stated that W,,, and wi are expressed 
as a ratio of two determinants. We have 

a(x,t> det A 
Wm(x,f) = - = - 

t(x,t> det H’ 
(0.13) 

A is the matrix 

I a-m 

H 1 ! 
A= 1 a-l 

h(l) hem) 1 1 m .-- m I 
Since t is the determinant of the first m rows of the energy operator, we write t as the sum 
of products of determinants, 

r(x,t) = c det Bs(t) det(ts), (0.14) 
SES 

where 

(Bs(t))ij = pli_j, i = 1, . . . . m, j =O,l, . . . . m - 1, 

((Cs)).. = t!’ ‘I 4 ’ 
i,j=O,l,..., m. (0.15) 

The sum is over the set S of all increasing sequences S = (~1, ~2, . . .) of integers such that 
si = i for all except a finite number of i. The graphical representation of this set S are 
called Maya diagrams which have a one-to-one correspondence with Young diagrams. Any 
analytic function f(t) can be expanded in the form 

f(t) = c det h(t) det(cs), (0.16) 
s&s 

where c.s are determined by the orthogonality condition 

det(cs) = det Bs(&)f(t)lr=o, & = a ‘a a 
> at1’2ar2’ar3”” 

(0.17) 

With the aid of these equations wi is then expressed in the form 

(0.18) 
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Since the coefficients wj of W,,, and those of the Lax operator 15, Uj are related to each 
other, the solution function 112 of the KP equation is written in terms of the tau function in 
the form 

a2 
i42 = s lOgT(X,t). (0.19) 

The coefficients of the tau function have to satisfy the Plucker relations, a fact which 
indicates that the tau function may be seen as a function acting on a Grassmannian. The 
Lax equation is the compatibility condition for the linear system 

(0.20) 

and the eigenfunctions + are given by 

l/J = 
i 

1 + 2 wi(X,t)*-’ 
i=O 

) eXp[x + siiQ]. 

The function @ is called the Baker function. This is the analytical framework. We now start 
with the algebraic-geometric construction. Let H be the Hilbert space of square integrable 
functions on the unit circle with values in @. We split H in the direct sum H+ cl3 H-, where 
H+(H-) is spanned by {z”, n 2 0) ((z-“,n > 0)). The Grassmannian Gr(H) is the set of 
all closed subspaces W of H, where the orthogonal projection of W into H+ is a Fredholm 
operator and the orthogonal projection of W- into H- is a compact operator. (We consider 
the connected component with index zero of the Fredholm operator). The Grassmannian 
is a Hilbert manifold modeled over the space of the Hilbert-Schmidt operators from W 
into WI. The coordinate charts are indexed by the set S of the Young diagrams. The next 
construction is the determinant bundle DET( W) of Gr (H) where an element 4 E DET( W) 
is represented in the form 

4 =h~uii, h E @, 
i=O 

and {Wi} is an admissible basis of W. A basis is admissible if the matrix which describes 
a coordinate change has a determinant. The group of automorphisms on DET(W) is the 
subgroup G Lr (H) of the restricted general linear group on H, G L,, (H), where an element 
g E GLt(H) has the form 

according to the splitting of H, where a is an invertible operator, and b is the trace class. The 
group G L,,( H) acts transitively on Gr(H). A specific subgroup of GLT( H) is the group 
r+ of real analytic functions from the unit circle in Cx which extends to a holomorphic 
function as a map from the unit disc into Cx acting on the Hilbert space by multiplication.The 
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tau function is the holomorphic function from r+ to @ defined by 

rw(g) := ~WIW> 
g-‘SW 

= det(w+ + a-‘btu-), g E F+, (0.23) 

with w = (w+, w-) an admissible basis, 6~ a non-zero number in the fiber of the dual 
bundle DET* ( W) and (T the canonical global holomorphic section on DET* ( W). Note that 
the second equality in (0.23) only holds if g-’ has the block form (0.22). Then to each 
W E Gr(H) is associated a Baker function 

qw(s,z) = g(z) 1 + 2 wi(g)z-’ , 
( i=l ) 

(0.24) 

where g E I’+w = (g E f+,g-’ W transverse to H-}. This Baker function is written as a 
function of the tau function, 

rw (N,) $w(gtz) = dz)---$-& = g(z) 
rw(x-$,rl-p,...) 

rw(x,t) . 
(0.25) 

Comparing this algebraic approach to the analytic one, we see that the two tau functions 
and the Baker functions are equal. 

The problem we consider in this and the forthcoming papers is the Dirichlet problem on 
[0, 11, i.e. we have other boundary conditions than in the K dV or KP case for example. The 
Hilbert space will be L&[O, l] and the splitting is according to the even and odd functions. 
We will see that the elements of the Grassmannian are the tangent spaces of the isospectral 
sets of the Dirichlet problem. The main difficulty will be the determination of the group 
acting on the Grassmannian and on the determinant bundle, which is significantly different 
to the situation discussed above. The fact which makes things more complicated is that the 
translation symmetry of the circle no longer holds in our case. 

1. Facts from inverse spectral theory 

The following facts are taken from Ref. [9]. Consider the following Dirichlet problem: 

-Y”(X) + q(x)y(x) = AY(X), Y(O) = Y(l) = 0, 

q E L&o, 11, A E C, x E [O, I]. (1.1) 

The first result is that the spectrum of q is an infinite sequence of real numbers, which are 
bounded from below and tends to +oo. Writing y2(x, 1,) = y2(x, pn, q) for a solution of 
the differential equation (1.1) where kn is the nth eigenvalue of the Dirichlet spectrum of 
q, we associate a unique eigenfunction g, (x, FJ to CL,, defined by 

gn(x9 Pn) := Y2b? Pn) Y26, Pun> 

IIY2(~7/4JlI = Jz?czgFi 

(1.2) 
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where “ ’ ” denotes differentiation w.r.t. x and “ . ” w.r.t. h, respectively, and we further have 
I (g, 1 I = 1, g,, > 0. The gradient of p,, is given by 

al-&l 
- = g,2@,q). h(t) 

The inverse Dirichlet problem is to answer to what extent a point p E L2 is determined by 
its Dirichlet spectrum. Furthermore, given a q E L2, we ask what does the set of all square 
integrable functions look like which all have the same Dirichlet spectrum as q, i.e. what 
kind of set is the isospectral set M(q) := (p E L* 1 p(q) = ,u(p)}. To characterize the 
sequence of real numbers which arise as the Dirichlet spectrum of some q we look at the 
function CL in the following way: 

/.l : L2 + s, 4 + CL(q) = (Pl(q)r cL2(qh * * *h (1.4) 

where S is the space of all real, strictly increasing sequences of the form 

a, =n27f2+s+~“, n>l (1.3 

with s E l%, ~7 = (61,& , . . .) E e*. In order to determine q uniquely from its Dirichlet 
spectrum we introduce the map K : L2 -+ e: which maps q into K(q) = (~1 (q), Q(q), . . .), 
where 

h(q) := log{-l)“Y;(l,Pn). (1.6) 

The numbers K,, are essentially the terminal velocities. Note that a point q in L2 is even 
if and only if I = 0. The space .!i is the discrete version of the Sobolev spaces, i.e. it 
consists of all real valued sequences (a,) such that Cn(nka,)2 < 00. The basic theorem 
for the inverse Dirichlet problem is: 

Theorem 1 [9, p. 1161. The map K x p from L2 to S x -!: is a real analytic isomorphism. 

We are interested in the asymptotic expansion with respect to large eigenvalues &, of the 
various functions we introduced above. 

Theorem 2 [9, pp. 38,591. 

gn(X,q) = Asinnnx -I- 0(1/n>, g:(x) = JZnncosnnx + O(l), 
1 

I-La(q) = n2x2 + 
J 

q(t) dt + f*(n), g,2(n,q) = 1 - cos2nnn +0(1/n), 

0 

d 2 
zg,(x,q) = 2nn sin2nnx + O(l), Kn(q) = & (sin 2nnn, 4) + O(l/n2>. 

(1.7) 

All the estimates hold uniformly in bounded subsets of [0, l] x L*. 
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Fig. 1. L2 as a bundle over E with fibers M(e). 

The brackets ( , ) in the above theorem denote the usual inner product on the real Hilbert 
space and l*(n) means that there is a sequence (A,) such that c, IA,, I2 < cc. Since our 
goal is to do Riemannian geometry on the isospectral set we use the following facts which 
are all proved in Ch. 4 of [9]. The first is that M(p) is a real analytic submanifold of L* 
lying in the hyperplane of all functions with mean [p] := &t q(t) dt. Furthermore, L* is the 
direct sum of the normal space N4 (M(p)) at the point q and the tangent space Tq(A4(p>) 
at the same point. The two spaces are defined by 

The components of the two vectors Vc and U, are given by 

uo = 1, lJ,=&l, d 2 

v, = 2dngn. 

(1.8) 

(1.9) 

There is another characterization for L* which is very suggestive for our geometric consid- 
erations, i.e. denoting the set of even square integrable functions by E and the set of odd 
ones by U, we can write L* = E @ U. M(e) intersects E in exactly one even point e and 
nowhere else (Fig. 1). Therefore, we have 

L2 = u M(e). 
eeE 

(1.10) 

The solution curves Q’(q) := @‘(q, Vq) of V, are given by 

a < t < b, @O(q) = q, (1.11) 

where we assume that a < 0 < b and that the curve is Coo. 
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Fig. 2. Coordinate chart map from L* into S. 

2. The metric, connection and curvature of M(e) in the asymptotic case 

Let q E M(e). Then the asymptotic metric components gjk (q), or just the metric corn- 

ponents, at the point q are defined by 

1 

gjk(q) = 
s 

vj(X,q)Vk(X,4)tjqkh, (2.1) 

0 

where the sequences (&) and (nn) are elements of ef and Vi, Vk E T,(M(e)). We have: 

Lemma 1. The asymptotic metric components are given by 

$?jk(q) = 8njksjk + O(l), gjk(q)tjjrlk < 00. 
j, k=l 

(2.2) 

Proo$ We insert the asymptotic expression for the tangent vectors (1.8) and write 

1 

8jk(4) = 4 
s 
0 

=4 
S( 

’ 47rjsin2nj*+0(1))(4rrksin27rkx+O(l))dx 

0 

= 8njkajk + O(l), 

where we used the notation g!(x, q) := gT(.x, q, Fj (4)). The claim that c,Tk=t gjk(q)cjr]k 

< 00 is clear. 0 

The next task is the calculation of the asymptotic connection and the asymptotic curvature. 
Fig. 2 shows the geometric setting. 

We prove the following lemma. 

Lemma 2. The connection of the isospectral setfor large eigenvalues andfor {j, )Ik, Ui E l2 
is given by 
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which is well dejned if VI E t:. 

Proojf Let I = u E e: and V’, Vk be elements of the tangent space at q E M(e). TO 
determine the connection we need to calculate terms of the form 

Using the representation 

Yi =2:$Pj(q) 

for the tangent vectors we have 

1 

s 
~(X,K-l(u))vk(X,K-l(u))~j~k~ 

0 

(2.3) 

(2.4) 

Since the estimates for Vj hold uniformally on bounded subsets of [0, 11 x L* we are 
allowed to interchange integration and differentiation. To justify the change of order of the 
derivatives w.r.t. x and ui, first suppose that in the above equation pj is twice differentiable in 
q. Since both sides of the equation hold in a dense subset of L2, this also holds in general by 
continuity in q. We start with the calculation of L?,gjK-‘(U)gj = (a*/a(K-‘)*)pj. Writing 
for simplicity q := K-‘(U), we have for the derivative of gj: 

a 
dqgn = 

a, ~2 
- 1gna~10g~2(l,~n,4)Y;(1,~nr4). (2.6) 

j*(lt hq)Y;(L ,%>4) 

With this formula we can write the second derivative of all w.r.t. q as 

$bh = -&a, 10g(~2(1,CLntq)Y;(l,~n,q)) 

+ 
2gn 

a02. 
j2(19 I*n99)Y;(17 Pn,q) 

(2.7) 

Using the asymptotic expansion of y2 given by (1.7), we have 
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a,~2(l,~n,q)Y~(l,cL,,q) 
1 

S( 

cos 1/Ti;t sin fit = 
0 

(2.8) 

gince~~cosJjZ-,tsin,/Ztdt = (l/n) andj~sin2&rdt = (1/2,~,)(1 +0(l)) we 
get 

(2.9) 

Using the asymptotic expansion of g,’ (see (1.7)) we can finally write for the first term in 

(2.7) 

-23, 10g(j12(l,~n.9)Y;(1,CLn,4)) = own). (2.10) 

The next term in (2.7) we have to deal with is the derivative of y2 w.r.t. q. Using the 
asymptotic expansion of (1.7) we calculate 

apy2Taq(sin~) = !!$--!L(sin~‘, 

=0(1/n)& = O(l/n>(l -cos2nnx +0(1/n)) =0(1/n). (2.11) 

Therefore, we get the following expression for the second term in (2.7): 

= O(l/n>(nn + O(l))(l + O(l/n))(sin &x +0(1/n)) = O(1). 

(2.10) and (2.12) together prove that 

(2.12) 

a2 
aqZCLn = O(l). 

With this result we continue to calculate aui gjk (u). 

Since 

(2.13) 

(2.14) 

we get 

k(aujclj(vj = 47fi sin2rrix + O(1). 

Hence 
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(2.15) 

In order that the sum over i, j, k of (2.15) is convergent we have to assume that ai E e 1 and 
that ej, r]k E c2. Therefore, 

To obtain the connection form, we have to invert the metric, 

gkl = (8x&l + o(l))-’ 

1 -1 

= -&l 
8rr 

1 + o(l)&& 

This implies for the connection the following expression for large eigenvalues 

~.=~~[~~y~+tp!!L&} 
I=0 

i2 + j2 + l2 
= 

kl(i + j +I) 
6fjj.rlkaiW. 

(2.16) 

(2.17) 

(2.18) 

This proves Lemma 2. 0 

The same kind of calculations gives us for the curvature the following expression: 

Theorem 3. The asymptotic curvature on the isospectral set for 

R~ji = C(akrj~ - ajrl i- r$Tjil - rj~r~i)(j~koivl 

l=O 

has for cj, qk, Ui E c2 the form 

(h2 + k2 + Z2)(12 + j2 + i2) 

1 

~,17ka,vl 
h212(h+k+l)(i+j+l) ’ ’ 

(h2 + j2 + 12)U2 + j2 + i2) 
h212(h+j+l)(i+k+l) 

(2.19) 

which is well defined if VI E ei. 
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3. The parallel transport in the asymptotic case 

Let c be a curve on the isospectral set whose components satisfy the differential equation 

de’(q) 6’ := - = V@‘(q)), 
dt 

c”qk(q) = q, a < t < b, (3.1) 

and we assume that the curve is smooth. Using vk = 4nk sin 2nkx + 0( 1) and (2.18) we 
have 

(4nk sin 2rkx + 0( l))tjr/ivlak 

=: (4nksin2nkx +O(l))q!k, (3.2) 

where CJk E f!:. 

Theorem 4. 
(a) Let q E E. Then the tangent vector U(x, c’(q)) is reachedfrom the tangent vector 

U(x,q) along an integral curve cf (q, V,), which satisfies d’ = U(c’(q)), co(q) = 
q, a -C t -C b, by the transformation 

where tj, qk,oi E c2, Vl E f.;. 

(b) Let q E E. Then the tangent vector U (x, cf (4)) is reached from the tangent vector 
U(x, q) along an integral curve cz (q, VI), which satisjes C’ = U(c’(q)), co(q) = q, 
a -C t < band VI := (l,O,O, . . .), by the transformation 

u’(x&(x))) 

= j~0 (exp(-~ 

(4nksin2nkx + l)O( ::(~~~~:21)illliy1ck 

x(-1)P + & p2(-l)k wx, q(x)), 
k=O 

Proo$ First we prove (a): The parallel transport equation we consider is 

dU’(d(qW) = 
dt 

-c’3kr;kuj(x,q(x)), U’(t = 0) = U’(x,q(x)), (3.3) 
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where U’fx, q(x)) is a component of the tangent vector U, E Nq(M(e)). The solution of 
(3.3) is 

where the operator T denotes that the integral is a time ordered integral. It is defined in the 
following way: Let A(t) be a bounded operator on a Hilbert space, then 

=g(-l)‘jdtljd+ ~‘dr,,O,&,, . . . ,t,~)A,,(t,,)...A,(r~“) (3.5) 

0 0 0 

with S, the symmetric group of n elements, (at, . . . , a,) a permutation of n elements and 
the function 0, (r,, , . . . , t,,n) is equal to one if to, 5 to2 5 . . 5 t,,,, and zero else. We start 
calculating (3.4): 

t cc 

= 
SC ( 

o k’+j*+l* 
(4nk sin 2nkx + 0( l))tjni “[ok 

o I=0 il(k + j + I) 

=F 
I=0 

(4nkSin2nkx + O(l))O( ~~~~~:;) $ e’ic”(q)“: dstjqiyok, (3.6) 

where we used (1.6). The norm ] ]cS (q) ] ]f has the expression (see [9]) 

IIc”(dll~ = hII; + 8~Mco~M~dq) +&I) - coshKn(q))> 
II21 

(3.7) 

with S, = 2n2n2(1 + O(logn/n)). We restrict for simplicity to the case where q E E. 

Using that K(q) = 0, Vq E E and the identity 2sinh* x/2 = coshx - 1 we obtain 

IIc”(q)ll~ = Ilsll~ + 16x6, sinh*(~.G,). (3.8) 
?I21 

Inserting (3.8) into (3.6) gives 
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= 

l=O 

(3.9) 

We now prove part (b). We then have 

Since 

s sinh2m x dr = (- 1)” 

we get 

(3.10) 

Since the time matrices appearing in the time ordered product (3.4) are diagonal and hence 
commute, we can avoid the time ordering operator in this asymptotic case and we get 

x Uj(x,q(n)). 
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This is the desired explicit expression for the parallel transport in the case of the 
example. 0 

Note that the operator in (3.11) acting on the tangent vector component is only a bounded 
operator if we restrict the time t to be finite. Therefore, we cannot reach a vector V E 
N,=(,) (M(e)) by parallel transport from a tangent vector lying in the even space E. 

4. Geodesics on the isospectral set 

The goal in this section is to select out the geodesics from the curves on the isospectral 
set. Let cS : [a,!?] -+ M(e) be a Cot curve on M where s denotes the arc length of c, 
i.e. IlCll;! = 1. A variation of the curve cS is defined by the smooth mapping 4 : [a,b] x 
(-6,~) + M(e), l E R which satisfies: 
(a) $(s,O) = CS, Vs E [a,b], and 
(b) there exists a subdivision [a = to, tl, . _ . , rk = 61 such that q5(s, u) =: r#?.“, u E 

(-6, E) is a Coo mapping on each partition [t/-l, tl] x (-6, E) for 1 = 1,2, . . , k. 
The tangent space T, (M(e)) at q E M(e) consists of all vectors V, = CnzO 4 V, (x, q), 

(&) E e:, where V,(x,q) = 2(d/dr)&(x,q). The tangent vector for each fixed time t of 

4 ‘* ’ is given by a@~“/au and the vector field W along cS defined by 

(4.1) 

is called the infinitesimal variation induced from cS. The first task is to calculate the covariant 
derivative of a tangent vector in T4 (M (e)) w.r.t. another tangent vector given the connection 
(2.18). Let Ap, B, E Tq(M(e)), then the covariant derivative of Ap in the direction B, is 
defined by 

VBbAg = ,llo f[(r’)-‘A,@ - Agl* 

where r’ is the integral curve of B, starting at q E E and 

Atfitq) = ~BnUn(x.c’(q)), I/%)~GN E e:. 
n 

Lemma 3. Let A@, B, E T4 (E), then the covariant derivative of Ap in the direction B, is 
given by 

where 

(4.4) 
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Pro05 From (3.9) we get 

(r’)-‘AtB - Ag 

x BnfJ”(x,s(x>h 

Dividing by t and taking the limit r + 0, which is the same as to derive 

cc 

c 6, sinh2(is&) ds I 

WI=1 I 

at t = 0, gives us the desired result. 

109 

0 

To get a necessary and sufficient condition for a curve to be a geodesic we use the 
following theorem. 

Theorem 5. Let ct : [a,b] + M(e), (Ii-11 = 1. The curve c’ is a geodesic if for every 

variation C#I : [a, b] x (-•E, C) + M(e) oft’ the equality 

b 

s 
g(V$, W) ds = 0 (4.5) 

a 

holds, where W is defined in (4.1). 

Before we start checking the implications of this theorem in our situation, we first give 
the parallel transport equation and the formula for the covariant derivative in the case where 
the point q E ti[O, I] is not lying in the subspace of the even functions E. The parallel 
transport equation reads 

X 2 6,]cosh(Kn(2s&)) - cosh(s&J] wx, c”Mx))), 
fl=l 

(4.6) 

where we used that K, (cS (4)) = I,, + se,, in the K-coordinate system. The covariant 
derivative of Ag(x, c’(q)) in the direction B, along the integral curve ct starting at es(q) 
is given by 
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where 

(4.7) 

h,(s) = cosh(lc, (2&)) - cosh(&). 

The strategy to prove a sufficient condition for acurve on the isospectral set to be a geodesic is 
first to write out condition (4.5) in our situation, second to express this result in an equivalent 
fixed point equation and third to constrain the functions appearing in the fixed point equation 
in a way that we get a unique solution of this equation. 

Lemma 4. 
h 

s g(V&, W) ds 

x(64z3i4 sin’(2irx) + O(i3))d.s 

where CTj, k, 1, i is given in (4.4), W is the inJinitesima1 variation dejined in (4.1) and c* : 

[a,61 + M(e),lMl = 1. 

Proo& Rewriting the metric in the form 

g(Ved, W) = C gih(VeC?)i Wh = 
ih 

we get 

h 

s 
g(V&, W) ds 

a 
b 

c (8nih&h + O(l))(V$)’ Wh, 
ih 

= cs @nih&h + O(l))(Vbk)’ Wh ds 
ih a 

b 

c$(S,O)nihSih(Vbk)‘T;Z ds + O(1) b$(~,O)(V&)iT~~); 
f 
a 
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where we introduced the variation of the path cf explicitly, i.e. 

#(s, u) = exptisqjW~ + UT,). 

Going on with the calculations and setting C#J(S, 0) = cs (q), we get 

111 

b 

cS(q)xihSih(V&‘T,hds+O(l) 

x (64rr3i4 sin2(2i7rx) + O(i3)) ds 

1 

O(ih) C f&&,(s) d.s . 

1) 

(4.8) 
I?221 

This proves the lemma. 0 

To find an explicit solution of (4.8) is hopeless. However, we apply the Banach fixed point 
theorem to show at least existence and uniqueness of a solution for a sufficiently small time 
interval [a, b] and for to be specified bounds on q. Using (see [9]) 

d2 
c’(q,V~)=q-2~logdetO(x,f~,q), 

x 

0(X, t$,q)ij = 6ij + (ett - 1 1 gi(W,q(W),hi)gj(w,q(W),~~)dw, 
s 
0 

&In&J E $3 (4.9) 

we can write (4.8) in the equivalent form 

qjl(i)dr=ji(~)6(r,r.q)dr; 

a a 

where 

(4.10) 
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z(s) = exp c 6, [cosh(K, (2s&)) - cosh(s&)] 
m>l 1 

E(X,S,q) = 22 log&t 1) 1 gi(w,q(W),hi)gj(w,q(w),~i)dw 1 . 

0 

(4.11) 

We write (4.10) in the fixed point equation form 

q = G(a,b,q,t). (4.12) 

Theorem 6. Thefiedpoint equation (4.12) has a unique solution if 

I 1 

I(1 - et5jlI 
J J 

Igil lSj14 < 19 Vi,.i, 
0 0 

O(j) 
1 - I(1 -erej!l.&t IRi14Ji lgjl4 

roe . 
0 

j: , Vl, 

le*b - F(S)IZ(S)12ds -C c2, 

x 

II&j + (et" - 1) 
s 

gi(w,q(w),hi)gj(w,q(w),Ai)dwIIl < 1, 
0 

where c := I r,” Z(s) dsl, thefunction Z(s) is given in the proof and x ~10, l[, where x is 
the parameter in the normalized eigenfunctions gk (x, ). If x = 0 or x = 1, then there exists 
no t such that the above conditions for the&ed point equations hold. 

Proot To apply the Banach fixed point theorem we have to show that G is a contraction. 
We have 

IIGh) - Wdll; 

5 ;/” lZ~s~l2/ I%(x,st,ql)ds - W&,q2)12tids, (4.13) 

a 0 

where 
b 

c := 1 
J 

Z(s)dsI. 

a 



I! Vanini/Journal of Geometry and Physics 18 (1996) 93-117 113 

Let H(u) := H(x, uql + (1 - u)q2), v E [0, l] be the operator which interpolates between 
@(x,se,ql) and O(n,s6,qA i.e. 

H(x,uq)l,=~ = @(x,s.$,ql), H(x,w)l,=o = O(x,st,qd. (4.14) 

If E(x&q~)8-* (x, se, 42) is trace class, then 

I 

detO(x,s~,ql)O-‘(x,s~,q2) = -exptr 
s 

dH(u) -1 
duH (v)du. 

0 

(4.15) 

Since 0(x, SC, ql) = 1 + trace class and 

O-‘(x,sc,q2) = 1 + trace class = F(-l)“Bk, 
k=O 

if llB((1 < 1, a sufficient condition for O(x,s~,q,)O-‘(~,s~,q2) to be trace class is that 
the matrix Bij = (e’b - 1) Jo” gi(w, q(w), hi)gj (w, q(w), hi) dw has trace class norm less 
than one. Therefore, 

(4.16) 

Using 

dH(u) Xd - = 
dv 

(e’Q - 1) 
s 

z[gi(U,, uql(W) + (U - l)q2(W)) 

0 

X gj(W, VI(W) + (U - l)@(W))I(ql(W) - qZ(W)) dw 

Id -. -. (eft - 1) 
s 

Gkigil(q1 (w) - q2(w)) dw, 
0 

H(u),’ = F(1 - erci)k 
kc0 ( 

1 tgi (W> %I1 (WI + (v - l)qz(w)) 

0 

k 

x gj(w, w(w) + (u - l)q2(w))l dw 

03 
-. -. 

c 
(1 - e’~~)k 

k=O 
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we get 

dugi(u,r)gj(U,X)(q1(5) - q2(~)) dw 

0 0 0 

k 00 

X 
c 

(1 - et61)k dv12dx 
k=O 

52 (erc' 

2k c-2 
X 

c 
(1 - &j)2k 

k=O 

+(e’b - 1) J kigjl(ql(w) - q2(w)) dw 

X2(1 -eJ;, 
k=O 

([gigjdw]2k-2 [(2k - l)(gi(x)gj(x))2 

+ 
s 
‘(gigj)dw-&&ig~) 

I 

+ 2(etB - l)~kigjlCql(W) - q2(w))dw 
0 

=: A + B + C. 

We bound A by using the Cauchy-Schwarz inequality and the Hijlder inequality, 

Cm 
X c 

(1 - e% )2k dvdx 
k=O 
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1 

< 

CJ 

2 - J(erti - 1)12 2 I(1 - ercJ)12k 
ii o k=O 

1 

q1 + (1 - s)q2) = 0 1 

0 
i ’ 

gi = n&sinnix +0(1/i), 

we get for the A-term, 

1 

A 5 12 
s 

I(e@ - 1)12F\(1 -ergj)12k 
ij o k=O 

( 
1 

X 
s 

lgi I2 

0 

1 

k 

< - 1s 2 I(e@ - 1)1* 
1 

ij o 1 - I(1 -e’ci)lJ;: I&Tit”& lgj14 

x (Ilq1-42/l:) (O(i) + O(j)) 

if I(1 -e’b)lli \gi14Jd \gj14 < l.Ifwebound 

O(i) (0 
e’ 

1 - I(1 - &IJd lgi14& lgj14 - 0 
j? ’ 

then we can perform the j-sum, i.e. 

1 

A I c 2 
i s 

J(erti - 1)12We’)OW[lla - q2ll:l 5 ~2(~)lla - q2lli. 

0 

where we assumed that (e’t - 1 IO(‘) 1 c O(e’/i2). The other terms B and C are treated in 
the same way and we get with the above made assumptions that 

h 

JIG(a) - WMII; 5 $ 
s WlU~)12WIq~ - dl; =: c3llsl - qzll;, (4.17) 

a 



116 I? Vanini/Joumal of Geometry and Physics 18 (I 996) 93-l 17 

where E(S) is the maximum of the three constants coming from the A, B and C term, 
respectively, and in order that we have a contraction cg has to smaller than one, i.e. 

b 

s 
Z(s)lZ(s)12ds < c2. (4.18) 

a 

The exclusion of the parameter values x = 0,l is discussed after the following corollary in 
an example. Hence, up to this last point, Theorem 6 is proved. 0 

Corollary 1. If a curve ct : [a, b] + M(e) satis3es all the assumptions of Theorem 6, that 
is the interval [a, b], the points q E M(e) and the vector$elds Vc all satisfj, the conditions 
of Theorem 6, then it is a geodesic. 

Example. Takeq = O.Then, gj = sin jnx.Thecondition I(l-e’(j)1 Ji (gil4 & lgj14 < 1 
in Theorem 6 then reads 

1 
t<- 

ltjl 

which has no solution if x = 0, 1 such that t > 0. 
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